Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.205
Filtrar
1.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas na Dieta/farmacologia
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554054

RESUMO

Two experiments were conducted to determine the effects of different protein levels on the growth performance, feed efficiency and nutritional values, and phase feeding of the 2-spotted cricket (Gryllus bimaculatus de Geer). In experiment 1, 4 crude protein (CP) diets were formulated to contain 18%, 20%, 22%, or 24% CP, respectively. A sample of 7-day-old 3,600 crickets was equally divided into 24 plastic boxes (150 crickets each) in a completely randomized design with 4 diets and 6 replications. In experiment 2, 2-phase feedings were used. For starting period (days 7-18), crickets in all treatments were fed a diet containing 22% CP. During the growing period (days 19-35), 3 groups of crickets were fed diets containing 18%, 20%, and 22% CP. In the overall period of experiment 1, the crickets fed with 22% CP diet had greater body weight compared to those fed with 18% CP diet. In addition, the crickets fed with 22% CP diet had the lowest feed conversion ratio (FCR). The broken-line model indicated the growth pattern changed on day 18. In experiment 2, the crickets fed with 20% CP diet from days 19 to 35 had greater growth performance and lower FCR than those fed with 18% CP, but not different from those fed with 22% CP. In conclusion, 22% CP can increase growth performance by improving the feed efficiency of crickets. The implementation of 2-phase feedings using 20% CP, during the growing period, could be considered as a cost-effective strategy for sustainable cricket production.


Assuntos
Proteínas na Dieta , Gryllidae , Animais , Fenômenos Fisiológicos da Nutrição Animal , Proteínas na Dieta/farmacologia , Valor Nutritivo
3.
Am J Clin Nutr ; 119(2): 271-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309825

RESUMO

BACKGROUND: Protein intake plays an important role in maintaining the health status of older adults. However, few epidemiologic studies examined midlife protein intake in relation to healthy aging. OBJECTIVES: The objective of this study was to evaluate the long-term role of dietary protein intake in healthy aging among female participants in the prospective Nurses' Health Study (NHS) cohort. METHODS: We included 48,762 NHS participants aged <60 y in 1984. Total protein, animal protein, dairy protein (a subset of animal protein), and plant protein were derived from validated food frequency questionnaires. Healthy aging was defined as being free from 11 major chronic diseases, having good mental health, and not having impairments in either cognitive or physical function, as assessed in the 2014 or 2016 NHS participant questionnaires. We used multivariate logistic regression adjusted for lifestyle, demographics, and health status to estimate the odds ratios (ORs) and 95% confidence intervals for protein intake in relation to healthy aging. RESULTS: A total of 3721 (7.6%) NHS participants met our healthy aging definition. Protein intake was significantly associated with higher odds of healthy aging. The ORs (95% confidence intervals) per 3%-energy increment with healthy aging were 1.05 (1.01, 1.10) for total protein, 1.07 (1.02, 1.11) for animal protein, 1.14 (1.06, 1.23) for dairy protein, and 1.38 (1.24, 1.54) for plant protein. Plant protein was also associated with higher odds of absence of physical function limitations and good mental status. In substitution analyses, we observed significant positive associations for the isocaloric replacement of animal or dairy protein, carbohydrate, or fat with plant protein (ORs for healthy aging: 1.22-1.58 for 3% energy replacement with plant protein). CONCLUSIONS: Dietary protein intake, especially plant protein, in midlife, is associated with higher odds of healthy aging and with several domains of positive health status in a large cohort of female nurses.


Assuntos
Envelhecimento Saudável , Enfermeiras e Enfermeiros , Animais , Humanos , Idoso , Estudos Prospectivos , Proteínas na Dieta/farmacologia , Estudos Epidemiológicos , Proteínas de Plantas , Dieta
4.
PLoS One ; 19(2): e0296407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422047

RESUMO

To improve animal performance and modify growth by increasing lean tissue accretion, beef cattle production has relied on use of growth promoting technologies such as beta-adrenergic agonists. These synthetic catecholamines, combined with the variable inclusion of rumen degradable (RDP) and undegradable protein (RUP), improve feed efficiency and rate of gain in finishing beef cattle. However, research regarding the impact of beta-adrenergic agonists, protein level, and source on the ruminal microbiome is limited. The objective of this study was to determine the effect of different protein concentrations and beta-adrenergic agonist (ractopamine hydrochloride; RAC) on ruminal bacterial communities in finishing beef heifers. Heifers (n = 140) were ranked according to body weight and assigned to pens in a generalized complete block design with a 3 × 2 factorial arrangement of treatments of 6 different treatment combinations, containing 3 protein treatments (Control: 13.9% CP, 8.9% RDP, and 5.0% RUP; High RDP: 20.9% CP, 14.4% RDP, 6.5% RUP; or High RUP: 20.9% CP, 9.7% RDP, 11.2% RUP) and 2 RAC treatments (0 and 400 mg/day). Rumen samples were collected via orogastric tubing 7 days before harvest. DNA from rumen samples were sequenced to identify bacteria based on the V1-V3 hypervariable regions of the 16S rRNA gene. Reads from treatments were analyzed using the packages 'phyloseq' and 'dada2' within the R environment. Beta diversity was analyzed based on Bray-Curtis distances and was significantly different among protein and RAC treatments (P < 0.05). Alpha diversity metrics, such as Chao1 and Shannon diversity indices, were not significantly different (P > 0.05). Bacterial differences among treatments after analyses using PROC MIXED in SAS 9 were identified for the main effects of protein concentration (P < 0.05), rather than their interaction. These results suggest possible effects on microbial communities with different concentrations of protein but limited impact with RAC. However, both may potentially act synergistically to improve performance in finishing beef cattle.


Assuntos
Dieta , Digestão , Bovinos , Animais , Feminino , Dieta/veterinária , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Rúmen/metabolismo , Bactérias/metabolismo , Agonistas Adrenérgicos beta/farmacologia
5.
Br J Nutr ; 131(1): 41-53, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469294

RESUMO

Reducing dietary crude protein (CP) concentration while maintaining adequate amino acid (AA) supply by free AA inclusion can contribute to attenuate the negative environmental effects of animal farming. This study investigated upper limits of dietary free AA inclusions without undesirable effects including the dependence on asparagine (Asn) and glutamine (Gln) supply. Ten broilers were allocated to sixty-three metabolism units each and offered nine experimental diets from day (d) 7-21 (n 7). One diet (167 g CP/kg) contained 80 g soya protein isolate (SPI)/kg. In the other diets, 25, 50, 75 and 100 % of the digestible AA from SPI were substituted with free AA. Digestible Asn+aspartic acid (Asp) and Gln+glutamic acid (Glu) were substituted with Asp/Glu or 50/50 mixes of Asp/Asn and Glu/Gln, respectively. Total excreta were collected from d 11-14 and from d 18-21. Growth and nitrogen accretion were unaffected by 25 and 50 % substitution without and with free Asn/Gln, respectively, but decreased at higher substitution (P ≤ 0·024). Circulating concentrations of Asp, Glu and Gln were unaffected by treatment, while Asn decreased at substitution higher than 50 % when Asn/Gln were not provided (P ≤ 0·005). Blood gas analysis on d 21 indicated a compensated metabolic acidosis at substitution higher than 50 and 75 % without and with free Asn/Gln, respectively (P ≤ 0·017). Results suggest that adding Asn/Gln increased an upper limit for proportion of dietary free AA from 10 to 19 % of dietary CP and enabled higher free AA inclusion without affecting the acid-base balance.


Assuntos
Aminoácidos , Glutamina , Animais , Aminoácidos/metabolismo , Galinhas/metabolismo , Asparagina/metabolismo , Equilíbrio Ácido-Base , Dieta/veterinária , Ácido Glutâmico , Peptídeos , Proteínas na Dieta/farmacologia , Nitrogênio/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
6.
Sci Rep ; 13(1): 19943, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968448

RESUMO

Single amino acid (AA) supplementations in foods are increasing, however their potential nutritional and physiological impacts are not fully understood. This study examined the effects of L-lysine (Lys) supplementation on protein quality of diets, serum AA concentrations and associations between the ratio of supplemental Lys to dietary protein (X) with body weight gain (BWG) in Sprague-Dawley male rats. Rats were fed one of 10 diets containing either 7% or 20% casein and supplemented with 0% (Control), 1.5%, 3%, 6% Lys or 6% Lys + 3% L-arginine (Arg) (8 rats/diet group) for 1 week. Lys supplementation reduced the protein quality of the casein-based diets (p < 0.01). BWG was reduced by supplemental Lys when X > 0.18. Free Lys supplementation dose-dependently increased serum Lys levels (p < 0.01), while increased protein-bound Lys (1.4% vs 0.52%) had little effect on serum Lys (p > 0.05). In the 7% casein diets, ≥ 1.5% supplemental Lys reduced serum alanine, asparagine, glycine, isoleucine, leucine, serine, tyrosine, valine, carnitine, ornithine, and increased urea. Supplementation of ≥ 3% Lys additionally reduced tryptophan and increased histidine, methionine and α-aminoadipic acid (α-AAA) compared to the Control (p < 0.05). In the 20% casein diets, addition of ≥ 1.5% Lys reduced serum asparagine and threonine, and ≥ 3% Lys reduced leucine, proline, tryptophan, valine, and ornithine, and 6% Lys reduced carnitine, and increased histidine, methionine, and α-AAA. Overall, this study showed that free Lys supplementation in a Lys-sufficient diet reduced the protein quality of the diets and modified the serum concentrations of many amino acids. Excess free Lys intake adversely affected growth and utilization of nutrients due to AA imbalance or antagonism. Overall lower protein intake increases susceptibility to the adverse effects of Lys supplementation.


Assuntos
Lisina , Triptofano , Masculino , Animais , Ratos , Lisina/farmacologia , Leucina , Caseínas/farmacologia , Histidina , Asparagina , Ratos Sprague-Dawley , Suplementos Nutricionais , Aminoácidos/farmacologia , Dieta , Metionina , Proteínas na Dieta/farmacologia , Aumento de Peso , Valina , Racemetionina , Carnitina , Ornitina
7.
Physiol Rep ; 11(23): e15885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036455

RESUMO

Previous studies have demonstrated both energy restriction (ER) and higher protein (HP), lower carbohydrate (LC) diets downregulate hepatic de novo lipogenesis. Little is known about the independent and combined impact of ER and HP/LC diets on tissue-specific lipid kinetics in leptin receptor-deficient, obese rodents. This study investigated the effects of ER and dietary macronutrient content on body composition; hepatic, subcutaneous adipose tissue (SAT), and visceral AT (VAT) lipid metabolic flux (2 H2 O-labeling); and blood and liver measures of cardiometabolic health in six-week-old female obese Zucker rats (Leprfa+/fa+ ). Animals were randomized to a 10-week feeding intervention: ad libitum (AL)-HC/LP (76% carbohydrate/15% protein), AL-HP/LC (35% protein/56% carbohydrate), ER-HC/LP, or ER-HP/LC. ER groups consumed 60% of the feed consumed by AL. AL gained more fat mass than ER (P-energy = 0.012) and HP/LC gained more fat mass than HC/LP (P-diet = 0.025). Hepatic triglyceride (TG) concentrations (P-interaction = 0.0091) and absolute hepatic TG synthesis (P-interaction = 0.012) were lower in ER-HP/LC versus ER-HC/LP. ER had increased hepatic, SAT, and VAT de novo cholesterol fractional synthesis, absolute hepatic cholesterol synthesis, and serum cholesterol (P-energy≤0.0035). A HP/LC diet, independent of energy intake, led to greater gains in fat mass. A HP/LC diet, in the context of ER, led to reductions in absolute hepatic TG synthesis and TG content. However, ER worsened cholesterol metabolism. Increased adipose tissue TG retention with the HP/LC diet may reflect improved lipid storage capacity and be beneficial in this genetic model of obesity.


Assuntos
Carboidratos da Dieta , Lipogênese , Animais , Feminino , Ratos , Colesterol/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ratos Zucker , Triglicerídeos
8.
Physiol Behav ; 272: 114368, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37805134

RESUMO

Pharmacological administration of fibroblast growth factor 21 (FGF21) alters food choice, including that it decreases the consumption of sucrose and other sweet tastants. Conversely, endogenous secretion of FGF21 by the liver is modulated by diet, such that plasma FGF21 is increased after eating foods that have a low dietary protein: total energy (P: E) ratio. Together, these findings suggest a strategy to promote healthy eating, in which the macronutrient content of a pre-load diet could reduce the consumption of sweet desserts in sated mice. Here, we tested the prediction that individuals maintained on a low P: E diet, and offered a highly palatable sweet 'dessert' following a pre-load meal, would eat less of the sugary snack compared to controls-due to increased FGF21 signaling. In addition to decreasing sweet intake, FGF21 increases the consumption of dietary protein. Thus, we predicted that individuals maintained on the low P: E diet, and offered a very high-protein pellet as 'dessert' or snack after a meal, would eat more of the high protein pellet compared to controls, and that this depends on FGF21. We tested this in C57Bl/6J, and liver-specific FGF21-null (FGF21ΔL) null male and female mice and littermate controls. Contrary to expectation, eating a low protein pre-load did not reduce the later consumption of a sweet solution in either males or females, despite robustly increasing plasma FGF21. Rather, eating the low protein pre-load increased later consumption of a high protein pellet. This was more apparent among males and was abrogated in the FGF21ΔL mice. We conclude that physiologic induction of hepatic FGF21 by a low protein pre-load diet is not sufficient to reduce the consumption of sweet desserts, though it effectively increases the subsequent intake of dietary protein in male mice.


Assuntos
Dieta com Restrição de Proteínas , Fatores de Crescimento de Fibroblastos , Masculino , Feminino , Camundongos , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fígado/metabolismo , Proteínas na Dieta/farmacologia
9.
PLoS One ; 18(10): e0292431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792787

RESUMO

Nutritional programming is the idea that early nutrient contributions can influence organismal structure or function and is documented in a variety of vertebrates, yet studies in fish are largely lacking. Tilapia are an important foodfish, with global production having increased rapidly since the 1990s. They exhibit high disease-resistance and grow well on formulated feeds which makes them an ideal aquaculture species, however incorporating high quality proteins into feeds can be costly. As feed constitutes 50-70% of total production costs in aquaculture, reducing protein content could curb these costs and increase revenue. Thus, we examined the effects of feeding Nile tilapia (O. niloticus) fry a restricted protein diet for the first 7-21 days on growth, gut microbial flora, and the intestinal transcriptome. Fish were fed either a 25% restricted or 48% control crude protein starter (ST) diet for up to 21 days and then switched to a 25% or 38% control crude protein growout (GO) diet. Fish fed a 25% ST diet for 14 days followed by a 38% GO diet had significantly higher lengths and weights and better feed efficiency than fish fed the control 48% ST and 38% GO diet after 56 days of culture. Growth of fry on the 25% ST, 7-day/38% GO and the 25% ST,7-day/25% GO diets did not differ from the those fed the control protein diets, while fish fed the 25% ST diet for 21 days had significantly lower growth and survival rates. We observed no significant differences in either alpha or beta diversity of the gut microbial flora between diets, however species richness (Shannon Index) was higher in fry fed the 25% protein ST diet regardless of the GO diet. Similarly, fish fed the 25% ST diet for 14 days followed by the 38% GO diet had minimal changes to the intestinal transcriptome relative to fish fed the control 48% ST and 38% GO diet. However, those fed 25% ST and GO diets for the entire 56 days exhibited substantial differences in the gut transcriptome from other groups showing gene expression profiles characteristic of detrimental changes to gut physiology, protein metabolism and immune function. Results suggest protein restriction for up to 14 days early in development leads to enhanced growth and feed efficiency with minimal effects on gut microbes or intestinal function. Protein restriction beyond this period appears detrimental to fish growth and health as underscored by expression of disease related genes and higher mortality rates.


Assuntos
Ciclídeos , Microbioma Gastrointestinal , Animais , Transcriptoma , Dieta com Restrição de Proteínas , Dieta/veterinária , Proteínas na Dieta/farmacologia , Ração Animal/análise , Suplementos Nutricionais
10.
Sci Rep ; 13(1): 14299, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652949

RESUMO

Pig manure contributes significantly to environmental pollution through nitrogen compounds. Reducing protein in feed can help, but it may lead to damaging behaviors if pigs' nutritional needs are not met. Breeding pigs for higher protein efficiency (PE) is a long-term solution to reduce nitrogen pollution, but concerns about pig welfare remain. We studied 95 pigs involved in a project on the genetic basis of PE on a 20% protein restricted diet to investigate the phenotypic connection between PE and welfare. These pigs represented natural PE variations in the population. At around 100 days, before their PE was known, we observed their behaviors. Only three pigs engaged in tail biting and manipulation of vulnerable regions, but this was not associated with PE. There was no clear link between PE and manipulating pen mates' less vulnerable regions. Such behaviors are normal but can cause stress and injury if carried out excessively due to boredom or stress. Overall, pigs with higher PE showed no major behavioral abnormalities in this study. Considering the lack of genetic knowledge, the risk of increased harmful behaviors when selecting for higher PE appears low when inferred from this purely phenotypic association.


Assuntos
Bem-Estar do Animal , Comportamento Animal , Poluição Ambiental , Nitrogênio , Fenótipo , Proteínas , Suínos , Animais , Feminino , Masculino , Ração Animal/análise , Comportamento Animal/efeitos dos fármacos , Dieta/veterinária , Proteínas na Dieta/química , Proteínas na Dieta/farmacologia , Poluição Ambiental/prevenção & controle , Esterco/análise , Nitrogênio/metabolismo , Proteínas/química , Proteínas/metabolismo , Suínos/genética , Suínos/metabolismo , Cauda , Poluentes Ambientais/metabolismo
11.
Obes Rev ; 24(11): e13613, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548066

RESUMO

There is a considerable appeal for interventions that can selectively reduce either the visceral or subcutaneous white adipose tissues in humans and other species because of their associated impact on outcomes related to metabolic health. Here, we reviewed the data related to the specificity of five interventions to affect the two depots in humans and rodents. The interventions relate to the use of dietary proteins, monounsaturated fatty acids, polyunsaturated fatty acids, calorie restriction, or bariatric surgery. The available data show that calorie restriction and bariatric surgery reduce both visceral and subcutaneous tissues, whereas there is no consistency in the effect of monounsaturated or polyunsaturated fatty acids. Dietary proteins, more specifically, whey proteins show efficacy to reduce one or both depots based on how the proteins interact with other macronutrients in the diet. We provide evidence that this specificity is related to changes in the composition and the functional potential of the gut microbiota and the resulting metabolites produced by these microorganisms. The effect of the sex of the host is also discussed. This knowledge may help to develop nutritional approaches to deplete either the visceral or subcutaneous adipose tissues and improve metabolic health in humans and other species.


Assuntos
Cirurgia Bariátrica , Gordura Subcutânea , Humanos , Gordura Subcutânea/metabolismo , Restrição Calórica , Proteínas na Dieta/metabolismo , Proteínas na Dieta/farmacologia , Ácidos Graxos/metabolismo
12.
Nutrients ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447375

RESUMO

Fibroblast growth factor 21 (FGF21), a hormone predominantly released in the liver, has emerged as a critical endocrine signal of dietary protein intake, but its role in the control of estrous cyclicity by dietary protein remains uncertain. To investigated the role of FGF21 and hypothalamic changes in the regulation of estrous cyclicity by dietary protein intake, female adult Sprague-Dawley rats with normal estrous cycles were fed diets with protein contents of 4% (P4), 8% (P8), 13% (P13), 18% (P18), and 23% (P23). FGF21 liver-specific knockout or wild-type mice were fed P18 or P4 diets to examine the role of liver FGF21 in the control of estrous cyclicity. Dietary protein restriction resulted in no negative effects on estrous cyclicity or ovarian follicular development when the protein content was greater than 8%. Protein restriction at 4% resulted in decreased bodyweight, compromised Kiss-1 expression in the hypothalamus, disturbed estrous cyclicity, and inhibited uterine and ovarian follicular development. The disturbed estrous cyclicity in rats that received the P4 diet was reversed after feeding with the P18 diet. Liver Fgf21 mRNA expressions and serum FGF21 levels were significantly increased as dietary protein content decreased, and loss of hepatic FGF21 delayed the onset of cyclicity disruption in rats fed with the P4 diet, possibly due to the regulation of insulin-like growth factor-1. Collectively, severe dietary protein restriction results in the cessation of estrous cyclicity and ovarian follicle development, and hepatic FGF21 and hypothalamic Kiss-1 were partially required for this process.


Assuntos
Proteínas na Dieta , Kisspeptinas , Ratos , Camundongos , Feminino , Animais , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Kisspeptinas/metabolismo , Ratos Sprague-Dawley , Ciclo Estral/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo
13.
Eur J Nutr ; 62(6): 2687-2703, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37273002

RESUMO

PURPOSE: When blended, animal and plant proteins can complement each other in terms of amino acid composition and release time. In this study, we investigated whether the blended protein diet has a better feeding effect than the single protein diet, and to reveal the differences in growth and intestinal microbiota composition caused by the blended protein diet. METHODS: Forty Sprague Dawley (SD) rats received diets with different protein sources, including casein (C), whey protein (WP), black soybean protein (BSP), and black soybean-whey blended protein (BS-WP), for eight weeks. To investigate the effects of blended protein supplement on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing and fecal metabolomics profiling. In addition, we determined growth and serum biochemical indices, and conducted intestinal morphology analyses. RESULTS: Compared to those in the BSP and WP groups, the daily body weight gain and feed conversion efficiency increased in the BS-WP group. Serum biochemical indices indicated that the protein utilization efficiency of the WP and BS-WP groups was relatively high, and the BS-WP blended protein diet improved the protein adoption rate. The BS-WP blended protein diet also improved intestinal tissue morphology and promoted intestinal villi development compared to the single protein diets. Furthermore, dietary protein altered the composition of gut microbiota, the gut microbial diversity of rats fed with the BS-WP diet was significantly (P < 0.05) higher than that of the other groups. The difference in dietary protein corresponded with an alteration of fecal amino acids and their metabolites, and tryptophan and tyrosine metabolism were the key mechanisms leading to the changes in fecal microbial composition. CONCLUSION: Dietary protein sources played an important role in the growth and development of rats by influencing intestinal metabolism and microbial composition. The BS-WP blended protein diet was more conducive to nutrient absorption than the single protein diet. Furthermore, blended protein increased the diversity of intestinal microbes and aided the establishment of intestinal barrier function.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Dieta , Proteínas do Soro do Leite/farmacologia , Caseínas/farmacologia , Proteínas na Dieta/farmacologia , Metabolômica , Ração Animal
14.
Nature ; 619(7970): 616-623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380769

RESUMO

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Assuntos
Competição entre as Células , Técnicas de Reprogramação Celular , Imunidade Inata , Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Competição entre as Células/genética , Competição entre as Células/imunologia , Proteínas na Dieta/farmacologia , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
15.
J Fish Biol ; 103(1): 32-43, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37072902

RESUMO

The authors performed an instantaneous bioenergetic study with rainbow trout (Oncorhynchus mykiss) of 206.3 g ± 2.9 g in a group respirometer of nine 250 l tanks at five different water temperatures (12, 14, 16, 18, 20°C) to determine the optimal thermal condition for a maximal visualization of the protein-sparing effect. Twelve fish per tank were tested at a stocking density of 9.94 kg m-3 ± 0.14 kg m-3 and fed three low-protein/high-energy diets with constant crude protein content of c. 35% and three different energy contents (17.35, 18.76, 20.50 MJ kg-1 ) once daily at a ration of 1.3% body weight (n = 3). Energy levels were increased by adding gelatinized wheat starch as a carbohydrate source and fish oil, canola oil and palmitin as lipid sources. Three different dietary digestible protein/digestible energy ratios (DP/DE: 20.38, 19.08, 18.09 mg kJ-1 ) were achieved by replacing bentonite as a non-nutritive filler with carbohydrates and lipids. Oxygen consumption and ammonia excretion were assessed to obtain the potentially retainable energy (RE) and ammonia quotient (AQ) as benchmarks for potential growth and protein-sparing effect. The results showed the lowest relative metabolic combustion of protein at 16.9°C ± 0.1°C. The authors determined this temperature to set the optimal thermal condition for the induction of a maximum protein-sparing effect in juvenile rainbow trout. Increasing the DP/DE ratio significantly altered the magnitude of the relative metabolic protein use but had no effect on its interactions with temperature. The authors were able to reduce average metabolic fuel use of protein across diets from 16.2% ± 2.3% at 12°C to 8.0% ± 1.2% at 16°C. This study found no relevant significant differences of RE with the environmental temperature.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Amônia/metabolismo , Dieta/veterinária , Proteínas na Dieta/metabolismo , Proteínas na Dieta/farmacologia , Metabolismo Energético
16.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36967519

RESUMO

To reduce the use of antibiotics, research into nutritional strategies designed to improve the gut health of weaned pigs is underway. This study sought to examine the effects of reducing dietary crude protein (CP) and/or supplementing the feed with sodium butyrate protected by the sodium salts of medium-chain fatty acids on the growth performance and gut health of weaned piglets. Ninety-six weaned piglets (Landrace × large white, 21 days of age) were allotted to four experimental treatments for 14 d. The experimental design was factorial with 2 CP levels and 2 feed-additive doses (0 vs. 1 kg/t). Results showed that reducing CP from 22.2% to 18.8% diet had no effect on piglet growth performance parameters during the first post-weaning week (P > 0.05), but did compromise growth in the second week (P = 0.011), impacting overall growth performance results (P = 0.019). Nonetheless, dietary CP level reduction led reducing crypt depth (P = 0.03657). In addition, Lactobacillus counts that were increased in the ileum (P = 0.032) and reduced in the colon (P = 0.032). Furthermore, apparent ileal digestibility of organic matter (P = 0.026) and fecal consistency (P < 0.05) were improved throughout the experiment. Moreover, in piglets fed diets containing 22.2% CP, the use of the feed-additive tended to improve the gain-to-feed ratio (P = 0.091) compared to those fed supplemented diets containing 18.8% CP. In addition, feed supplementation increased ileal numbers of goblet cells (P = 0.036), as well as apparent ileal digestibility of dry matter (P = 0.057) and organic matter (P = 0.003). Supplementation also had beneficial effects on the microbiota of the colon, increasing Lactobacillus counts (P = 0.006) and diminishing Enterobacteriaceae counts (P = 0.003), as well as affecting microbial metabolite profiles in that acetic acid concentrations tended to be increased (P = 0.088) and valeric acid concentrations were reduced (P = 0.002). These findings support the use of both strategies can improve the gut health of weaned piglets and prompt further research into the possible benefits of combining these two nutritional strategies on gut health and growth performance.


Reducing dietary levels of crude protein (CP) and the use of feed-additives such as sodium butyrate protected by medium-chain fatty acid salts are currently under investigation as nutritional strategies with beneficial effects on the intestinal barrier, and consequently on the health of weaned piglets. The intestinal barrier is a dynamic complex ecosystem that includes morphological structure and microbial composition. Reducing CP intake from 22.2% to 18.8% in piglets was found here to compromise their growth 2 wk after weaning. However, considering the effect of reducing CP on gut health, crypt depth was reduced and the Lactobacillus population was expanded in the ileum and diminished in the colon. In addition, organic matter digestibility and fecal consistency were improved. Supplementation with sodium butyrate protected by the sodium salts of medium-chain fatty acids at 1 kg/t increased the number of mucin-secreting cells, thereby reinforcing the intestinal barrier, and improving ileal digestibility. In addition, it modified the microbiota in the colon. These findings on different parameters of intestinal barrier prompt further investigation into the effects of both strategies on gut health and growth performance of piglets.


Assuntos
Dieta , Sais , Animais , Suínos , Ácido Butírico , Desmame , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Ração Animal/análise
17.
Curr Opin Clin Nutr Metab Care ; 26(2): 65-71, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892956

RESUMO

PURPOSE OF REVIEW: De novo lipogenesis (DNL) is a metabolic process occurring mainly within the liver, in humans. Insulin is a primary signal for promoting DNL; thus, nutritional state is a key determinant for upregulation of the pathway. However, the effects of dietary macronutrient composition on hepatic DNL remain unclear. Nor is it clear if a nutrition-induced increase in DNL results in accumulation of intra-hepatic triglyceride (IHTG); a mechanism often proposed for pathological IHTG. Here, we review the latest evidence surrounding the nutritional regulation of hepatic DNL. RECENT FINDINGS: The role of carbohydrate intake on hepatic DNL regulation has been well studied, with only limited data on the effects of fats and proteins. Overall, increasing carbohydrate intake typically results in an upregulation of DNL, with fructose being more lipogenic than glucose. For fat, it appears that an increased intake of n-3 polyunsaturated fatty acids downregulates DNL, whilst, in contrast, an increased dietary protein intake may upregulate DNL. SUMMARY: Although DNL is upregulated with high-carbohydrate or mixed-macronutrient meal consumption, the effects of fat and protein remain unclear. Additionally, the effects of different phenotypes (including sex, age, ethnicity, and menopause status) in combination with different diets (enriched in different macronutrients) on hepatic DNL requires elucidation.


Assuntos
Lipogênese , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Carboidratos da Dieta/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
18.
J Genet Genomics ; 50(4): 233-240, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773723

RESUMO

Dietary protein (P) and carbohydrate (C) have a major impact on the sweet taste sensation. However, it remains unclear whether the balance of P and C influences the sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of the effects of two diets on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet group, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.


Assuntos
Percepção Gustatória , Paladar , Animais , Masculino , Feminino , Percepção Gustatória/genética , Sacarose/farmacologia , Drosophila/genética , Carboidratos/farmacologia , Proteínas na Dieta/farmacologia , Serina/farmacologia , Treonina/farmacologia
19.
J Nutr Biochem ; 114: 109275, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669706

RESUMO

Diabetes is caused by the interplay between genetic and environmental factors, therefore changes of lifestyle and dietary patterns are the most common practices for diabetes intervention. Protein restriction and caloric restriction have been shown to improve diabetic hyperglycemia in both animal models and humans. We report here the effectiveness of intermittent protein restriction (IPR) for the intervention of diabetes in Zucker diabetic fatty (ZDF) rats. Administration of IPR significantly reduced hyperglycemia and decreased glucose production in the liver. IPR protected pancreatic islets from diabetes-mediated damages as well as elevated the number and the proliferation activity of ß cells. Single-cell RNA sequencing performed with isolated islets from the ZDF rats revealed that IPR was able to reverse the diabetes-associated ß cell dedifferentiation. In addition, diabetic ß cells in ZDF rats were associated with increased expressions of islet amyloid polypeptide, chromogranin and genes involved in endoplasmic reticulum stress. A ß cell dedifferentiation marker Cd81 was also increased in the ß cells of diabetic rats. In contrast, the expressions of D-box binding PAR bZIP transcription factor Dbp and immediate-early response genes were reduced in the diabetic ß cells. In conclusion, these results indicated that IPR is effective in glycemic control and ß cell protection in a diabetic rat model. In addition, diabetes in ZDF rats is associated with changes in the expression of genes involved in many facets of ß cell functions.


Assuntos
Diabetes Mellitus Experimental , Dieta com Restrição de Proteínas , Hiperglicemia , Ilhotas Pancreáticas , Animais , Ratos , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ratos Zucker , Proteínas na Dieta/metabolismo , Proteínas na Dieta/farmacologia
20.
Life Sci ; 316: 121381, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640899

RESUMO

AIMS: Sleep is a fundamental physiological function and is essential for all animals. Sleep is affected by diet compositions including protein (P) and carbohydrates (C), but there has not been a systematic investigation on the effect of dietary macronutrient balance on sleep. MAIN METHODS: We used the nutritional geometry framework (NGF) to explore the interactive effects on sleep of protein (P) and carbohydrates (C) in the model organism Drosophila. Both female and male flies were fed various diets containing seven ratios of protein-to-carbohydrates at different energetic levels for 5 days and sleep was monitored by the Drosophila Activity Monitor (DAM) system. KEY FINDINGS: Our results showed that the combination of low protein and high carbohydrates (LPHC) prolonged sleep time and sleep quality, with fewer sleep episodes and longer sleep duration. We further found that the effects of macronutrients on sleep mirrored levels of hemolymph glucose and whole-body glycogen. Moreover, transcriptomic analyses revealed that a high-protein, low-carbohydrate (HPLC) diet significantly elevated the gene expression of metabolic pathways when compared to the LPHC diet, with the glycine, serine, and threonine metabolism pathway being most strongly elevated. Further studies confirmed that the contents of glycine, serine, and threonine affected sleep. SIGNIFICANCE: Our results demonstrate that sleep is affected by the dietary balance of protein and carbohydrates possibly mediated by the change in glucose, glycogen, glycine, serine, and threonine.


Assuntos
Dieta , Proteínas na Dieta , Animais , Masculino , Feminino , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Glucose/metabolismo , Dieta com Restrição de Proteínas , Glicogênio , Drosophila/metabolismo , Treonina , Glicina , Sono , Serina , Carboidratos da Dieta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...